208 research outputs found

    A HEDGE ALGEBRAS BASED CLASSIFICATION REASONING METHOD WITH MULTI-GRANULARITY FUZZY PARTITIONING

    Get PDF
    During last years, lots of the fuzzy rule based classifier (FRBC) design methods have been proposed to improve the classification accuracy and the interpretability of the proposed classification models. Most of them are based on the fuzzy set theory approach in such a way that the fuzzy classification rules are generated from the grid partitions combined with the pre-designed fuzzy partitions using fuzzy sets. Some mechanisms are studied to automatically generate fuzzy partitions from data such as discretization, granular computing, etc. Even those, linguistic terms are intuitively assigned to fuzzy sets because there is no formalisms to link inherent semantics of linguistic terms to fuzzy sets. In view of that trend, genetic design methods of linguistic terms along with their (triangular and trapezoidal) fuzzy sets based semantics for FRBCs, using hedge algebras as the mathematical formalism, have been proposed. Those hedge algebras-based design methods utilize semantically quantifying mapping values of linguistic terms to generate their fuzzy sets based semantics so as to make use of fuzzy sets based-classification reasoning methods proposed in design methods based on fuzzy set theoretic approach for data classification. If there exists a classification reasoning method which bases merely on semantic parameters of hedge algebras, fuzzy sets-based semantics of the linguistic terms in fuzzy classification rule bases can be replaced by semantics - based hedge algebras. This paper presents a FRBC design method based on hedge algebras approach by introducing a hedge algebra- based classification reasoning method with multi-granularity fuzzy partitioning for data classification so that the semantic of linguistic terms in rule bases can be hedge algebras-based semantics. Experimental results over 17 real world datasets are compared to existing methods based on hedge algebras and the state-of-the-art fuzzy sets theoretic-based approaches, showing that the proposed FRBC in this paper is an effective classifier and produces good results

    Bat Diversity in Cat Ba Biosphere Reserve, Northeastern Vietnam: A Review with New Records from Mangrove Ecosystem

    No full text
    The Cat Ba Biosphere Reserve is internationally renowned for its spectacular karst landscape. It covers a large area with hundreds of limestone islands and various ecosystems including caves, tropical forests, and mangroves. However, previous surveys were only conducted in terrestrial ecosystems on Cat Ba Island. Therefore, bats inhabiting mangroves and the remaining islands did not receive attention from scientists up to 2014. To initially fill in the gaps, we conducted ten bat surveys between 2015 and 2020 with an emphasis on mangroves and previously unsurveyed islands. Bats were captured using mist nets and harp traps. Twenty-three species belonging to 13 genera of six families were recorded during the surveys. Of these, four species (Macroglossus minimus, Myotis hasselti, Phoniscus jagorii, Tylonycteris fulvida) are new to the reserve. Remarkably, 15 species belonging to seven genera of five families were captured in mangrove, which is the highest species diversity for bats reported from any mangrove area in mainland Southeast Asia. Based on results from the surveys and literature review, we here provide the most updated bat diversity of the reserve with confirmed records of 32 bat species belonging to 16 genera of six families. Historical records of each species in the literature were reviewed. Two species, Scotophilus heathi and Scotophilus kuhlii, are unconfirmed because of unclear evidence in previous publications. Results of this study indicated that the mangrove ecosystem is important for bats but still poorly studied in Cat Ba Biosphere Reserve and Vietnam as a whole. In addition, morphological measurements, echolocation data, distributional records, and conservation status of each species are also given in this paper for potential research and conservation campaigns in the future

    Contributions to the biodiversity of Vietnam – Results of VIETBIO inventory work and field training in Cuc Phuong National Park

    No full text
    VIETBIO [Innovative approaches to biodiversity discovery and characterisation in Vietnam] is a bilateral German-Vietnamese research and capacity building project focusing on the development and transfer of new methods and technology towards an integrated biodiversity discovery and monitoring system for Vietnam. Dedicated field training and testing of innovative methodologies were undertaken in Cuc Phuong National Park as part and with support of the project, which led to the new biodiversity data and records made available in this article collection.VIETBIO is a collaboration between the Museum für Naturkunde Berlin – Leibniz Institute for Evolution and Biodiversity Science (MfN), the Botanic Garden and Botanical Museum, Freie Universität Berlin (BGBM) and the Vietnam National Museum of Nature (VNMN), the Institute of Ecology and Biological Resources (IEBR), the Southern Institute of Ecology (SIE), as well as the Institute of Tropical Biology (ITB); all Vietnamese institutions belong to the Vietnam Academy of Science and Technology (VAST).The article collection "VIETBIO" (https://doi.org/10.3897/bdj.coll.63) reports original results of recent biodiversity recording and survey work undertaken in Cuc Phuong National Park, northern Vietnam, under the framework of the VIETBIO project. The collection consist of this “main” cover paper – characterising the study area, the general project approaches and activities, while also giving an extensive overview on previous studies from this area – followed by individual papers for higher taxa as studied during the project. The main purpose is to make primary biodiversity records openly available, including several new and interesting findings for this biodiversity-rich conservation area. All individual data papers with their respective primary records are expected to provide useful baselines for further taxonomic, phylogenetic, ecological and conservation-related studies on the respective taxa and, thus, will be maintained as separate datasets, including separate GUIDs also for further updating

    Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization

    No full text
    Despite their promise, circulating tumor DNA (ctDNA)-based assays for multi-cancer early detection face challenges in test performance, due mostly to the limited abundance of ctDNA and its inherent variability. To address these challenges, published assays to date demanded a very high-depth sequencing, resulting in an elevated price of test. Herein, we developed a multimodal assay called SPOT-MAS (screening for the presence of tumor by methylation and size) to simultaneously profile methylomics, fragmentomics, copy number, and end motifs in a single workflow using targeted and shallow genome-wide sequencing (~0.55×) of cell-free DNA. We applied SPOT-MAS to 738 non-metastatic patients with breast, colorectal, gastric, lung, and liver cancer, and 1550 healthy controls. We then employed machine learning to extract multiple cancer and tissue-specific signatures for detecting and locating cancer. SPOT-MAS successfully detected the five cancer types with a sensitivity of 72.4% at 97.0% specificity. The sensitivities for detecting early-stage cancers were 73.9% and 62.3% for stages I and II, respectively, increasing to 88.3% for non-metastatic stage IIIA. For tumor-of-origin, our assay achieved an accuracy of 0.7. Our study demonstrates comparable performance to other ctDNA-based assays while requiring significantly lower sequencing depth, making it economically feasible for population-wide screening

    Global impact of the COVID-19 pandemic on subarachnoid haemorrhage hospitalisations, aneurysm treatment and in-hospital mortality: 1-year follow-up

    No full text
    Background: Prior studies indicated a decrease in the incidences of aneurysmal subarachnoid haemorrhage (aSAH) during the early stages of the COVID-19 pandemic. We evaluated differences in the incidence, severity of aSAH presentation, and ruptured aneurysm treatment modality during the first year of the COVID-19 pandemic compared with the preceding year. Methods: We conducted a cross-sectional study including 49 countries and 187 centres. We recorded volumes for COVID-19 hospitalisations, aSAH hospitalisations, Hunt-Hess grade, coiling, clipping and aSAH in-hospital mortality. Diagnoses were identified by International Classification of Diseases, 10th Revision, codes or stroke databases from January 2019 to May 2021. Results: Over the study period, there were 16 247 aSAH admissions, 344 491 COVID-19 admissions, 8300 ruptured aneurysm coiling and 4240 ruptured aneurysm clipping procedures. Declines were observed in aSAH admissions (-6.4% (95% CI -7.0% to -5.8%), p=0.0001) during the first year of the pandemic compared with the prior year, most pronounced in high-volume SAH and high-volume COVID-19 hospitals. There was a trend towards a decline in mild and moderate presentations of subarachnoid haemorrhage (SAH) (mild: -5% (95% CI -5.9% to -4.3%), p=0.06; moderate: -8.3% (95% CI -10.2% to -6.7%), p=0.06) but no difference in higher SAH severity. The ruptured aneurysm clipping rate remained unchanged (30.7% vs 31.2%, p=0.58), whereas ruptured aneurysm coiling increased (53.97% vs 56.5%, p=0.009). There was no difference in aSAH in-hospital mortality rate (19.1% vs 20.1%, p=0.12). Conclusion: During the first year of the pandemic, there was a decrease in aSAH admissions volume, driven by a decrease in mild to moderate presentation of aSAH. There was an increase in the ruptured aneurysm coiling rate but neither change in the ruptured aneurysm clipping rate nor change in aSAH in-hospital mortality
    corecore